3 months ago
3 months ago
Share

The Strategy of Nuclear War

Traditionally there are three different types of nuclear strategy: first strike, launch on warning and post-attack retaliation. First strike is what it sounds like. Post-attack retaliation is too.

Launch On Warning

Launch on warning is also what it sounds like, except that many people don't realise that it only takes 30 minutes, or less, or less for nuclear missiles to travel to their targets, even at distances up to 1/3 of the way around the world (such as from Russia to the USA). Since the damage nuclear warheads create is obviously very extreme, there is a strong chance that unfired nuclear weapons will be destroyed on the ground by an enemy strike. Although attempts are made to harden nuclear missile sites against nuclear attack, the extent to which this is actually possible seems quite limited as far as I can tell (see below). Launch on warning seems to still be a strong component of nuclear strategy, perhaps the major one. Which would suggest that nuclear missiles and other components of the military needed to launch missiles are not regarded as being safe from nuclear attack.

Basically the launch on warning strategy goes like this: Incoming nuclear missiles are detected by either satellites and/or radar early warning systems. It takes about 30 minutes for nuclear missiles to reach their target in the other country. It is assumed that some of these incoming missiles will target the unfired missiles in the country being attacked. Because these missiles may not survive the attack, and therefore become useless, there is no other reasonable option but to launch them at the enemy before the enemy missiles arrive. Because the enemy missiles will arrive in less than 30 minutes after they are detected, there is less than 30 minutes in which to make the decision to launch these missiles, go through all the necessary protocols for pre-launch, and launch them.

Important IMPORTANT: This is the reason why a nuclear war can escalate extremely fast.

The strategy of launch on warning requires several things to exist — and these things do appear to exist: One is the ability to detect incoming missiles. Another is the knowledge of the locations of enemy's missile silos (which are not secret at all, you can look them up on the internet, e.g. here, here, and here). Another is the expectation that some or all of the unlaunched missiles and/or the silos can be damaged by a nuclear strike. Another is the ability to launch missiles within a very short amount of notice (under 30 minutes total time from detection of enemy missiles to firing of one's own missiles). Early ICBMs used liquid fuel which took over 30 minutes to fill up before the missiles could be launched. Newer technology, such as the US Minuteman missiles use a solid fuel which means the missiles can be permanently fueled and ready to launch within a few minutes notice (hence the name of "Minuteman").

According to the New York Times (2015), "the launch-on-warning doctrine still rules in both Russia and the United States". According to the Union of Concerned Scientists (2015), China is "concerned about losing their nuclear capabilities to a destructive first strike. To address this, the Chinese army plans to implement some version of hair-trigger alert, enabling the rapid launch of nuclear weapons if an incoming attack is confirmed."

Fred Kaplan in 1982 said that "80 percent of these new [hardened to withstand 5000 psi of blast pressure] MX [missile] silos could still be destroyed if the Soviets fired two warheads at each that landed an average of 520 feet from the target", and also that "No one really knows how to build a silo that resists 5000 psi. The Pentagon's reason for picking that number is that U.S. intelligence estimates claim that the Soviets have 5000-psi silos, and if they have been able to do it, so should we. According to knowledgeable sources, however, those intelligence estimates make guesses over a vast range about possible Soviet silo hardness, the low end of which is considerably below 5000 psi." He also said that existing US silos were hardened to 2000 psi.

In B-1B Bomber and Options for Enhancements (1988, pages 54-55), Jeffrey A. Merkley says that an air launched cruise missile (ALCM) "Would have about a 99 percent probability of destroying a target hardened to withstand a pressure of 500 pounds per square inch (psi), which is representative of medium-hard facilities such as munitions bunkers, leadership bunkers, and older Soviet ICBM silos. It would have about an 87 percent probability of destroying a target hardened to withstand a pressure of 5,000 psi, which is representative of very hard facilities such as newer Soviet ICBM silos and command centers buried deep underground". He then goes on to say that "Nevertheless, and perhaps most important, neither penetrating bombers nor standoff bombers equipped with cruise missiles may be the best weapons for attacking hardened targets such as silo-based ICBMs and command centres that might be used to coordinate a Soviet attack on the United States. If the goal is to prevent such an attack, accurate ballistic missiles like the MX ICBM and the forthcoming Trident II SLBM, which can reach the target in 15 to 30 minutes rather than in the 8 to 14 hours required by a bomber, may be preferable".

In 2016 (on page 100 of the book Nuclear Proliferation and Terrorism in the Post-9/11 World), David Hafemeister says that US silos are hardened to about 2000 psi, while the Soviets built some silos to take larger overpressures. Then later down the page, he says "As US accuracy increased, the Soviets moved their ICBMs from launch pads to silos with 300 psi hardness, then to silos with 2000 psi hardness and finally to some silos with a hardness of 5000 psi. During this period US accuracy improved from 1300m in 1962 to 300m in 1970 to 90m in 1986. It is generally accepted that accuracy won the race against hardness."

In other words, missiles in silos in the ground can still most likely be destroyed by attacking them with nuclear missiles. Which is the key motivation for the strategy of launch on warning. Clearly, long airport runways, as required to launch heavy bomber aircraft, are large and above-ground, and can (and will) easily be destroyed in a first-strike large-scale nuclear attack.

Launch on warning is one of the main components of the idea that no-one can win a nuclear war, which is often called "mutual assured destruction" (MAD). If a side is contemplating launching a first-strike nuclear attack, knowing that the other side is basically required to launch on warning is a deterrent to them attacking in the first place.

Launch on warning is also responsible for the danger of accidental nuclear war. This has already nearly happened, and possibly happened more times which have not been declassified and released to the public. One potential cause of accidental nuclear war is computer crime (hacking) due to the high degree of computerisation in modern weapon systems.

There are three types of "delivery" systems of nuclear weapons, which the USA calls its nuclear triad. These are land based missiles, submarine based missiles, and bombers (aeroplanes). Unlike missiles, bombers can be shot down in flight assuming they are detected. Trying to shoot down a nuclear missile travelling at 4-8 kilometres per second with another missile launched many kilometres (or hundreds of kilometeres) away would be a lot like trying to defend against a gun attack by using your own gun to shoot your attackers bullet out of the air.

The doctrine of launch on warning is made somewhat (i.e. slightly) less necessary by the existence of submarine launched ballistic (nuclear) missiles (a.k.a. SLBMs). These can be hidden underwater in secret locations, which cannot be targeted, and therefore allow for a second strike. Without SLBMs, launch on warning is pretty much imperative, since the only other option would be to not launch immediately and concede total defeat as the nuclear retaliation capability of the defending side is destroyed by the enemy's first strike. The vulnerable part of a submarine fleet is the network of radio stations needed to communicate with the submarines while they are underwater, as these are large and easy for the enemy (or anyone) to locate by satellite imaging. This critical vulnerability means that in a nuclear war, the communication systems would be destroyed very early on, and the submarines would be operating from standing orders that were previously given to them for use in this scenario. It also means that the launch on warning strategy still applies overall, even with the ability of the subs themselves to remain undetected and not be destroyed in a large-scale first-strike nuclear attack.

Most people are more or less aware of the massive destructive capability of nuclear weapons — but the speed in which a nuclear war can escalate is less well understood by the majority of people. It is not only the massive destructive power but this speed of escalation that makes nuclear war unique in world history.

Important IMPORTANT: This speed also means that for preppers and other concerned people, it's necessary to prepare for nuclear war in peacetime and not be expecting a long timeframe for the buildup of conflict like that which occurs in conventional wars. There may only be 30 minutes or less notice.

Cover image by U.S. Air Force.

Categories Nuclear,Threats
Prepping.com.au Homepage - Australian Prepping Web Magazine

Share This Page

Prepping is the art of preparing for the future. If you liked this page, please share it with others. The more prepared we are collectively, the easier the future will be for each of us individually.